152 research outputs found

    Fast spatial combinative lifting algorithm of wavelet transform using the 9/7 filter for image block compression

    Get PDF
    This is the post-print version of the article - Copyright @ 2000 IETA new fast spatial combinative lifting algorithm (SCLA) of the wavelet transform using the 9/7 filter for image block compression is proposed. In comparison with its lifting-based implementation, the number of multiplications is reduced by a ratio of 5/12 and the speed of implementation of the wavelet transform is increased

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    Descriptive temporal template features for visual motion recognition

    Get PDF
    In this paper, a human action recognition system is proposed. The system is based on new, descriptive `temporal template' features in order to achieve high-speed recognition in real-time, embedded applications. The limitations of the well known `Motion History Image' (MHI) temporal template are addressed and a new `Motion History Histogram' (MHH) feature is proposed to capture more motion information in the video. MHH not only provides rich motion information, but also remains computationally inexpensive. To further improve classification performance, we combine both MHI and MHH into a low dimensional feature vector which is processed by a support vector machine (SVM). Experimental results show that our new representation can achieve a significant improvement in the performance of human action recognition over existing comparable methods, which use 2D temporal template based representations

    Time-delay neural network for continuous emotional dimension prediction from facial expression sequences

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Automatic continuous affective state prediction from naturalistic facial expression is a very challenging research topic but very important in human-computer interaction. One of the main challenges is modeling the dynamics that characterize naturalistic expressions. In this paper, a novel two-stage automatic system is proposed to continuously predict affective dimension values from facial expression videos. In the first stage, traditional regression methods are used to classify each individual video frame, while in the second stage, a Time-Delay Neural Network (TDNN) is proposed to model the temporal relationships between consecutive predictions. The two-stage approach separates the emotional state dynamics modeling from an individual emotional state prediction step based on input features. In doing so, the temporal information used by the TDNN is not biased by the high variability between features of consecutive frames and allows the network to more easily exploit the slow changing dynamics between emotional states. The system was fully tested and evaluated on three different facial expression video datasets. Our experimental results demonstrate that the use of a two-stage approach combined with the TDNN to take into account previously classified frames significantly improves the overall performance of continuous emotional state estimation in naturalistic facial expressions. The proposed approach has won the affect recognition sub-challenge of the third international Audio/Visual Emotion Recognition Challenge (AVEC2013)1

    Automatic depression scale prediction using facial expression dynamics and regression

    Get PDF
    Depression is a state of low mood and aversion to activity that can affect a person's thoughts, behaviour, feelings and sense of well-being. In such a low mood, both the facial expression and voice appear different from the ones in normal states. In this paper, an automatic system is proposed to predict the scales of Beck Depression Inventory from naturalistic facial expression of the patients with depression. Firstly, features are extracted from corresponding video and audio signals to represent characteristics of facial and vocal expression under depression. Secondly, dynamic features generation method is proposed in the extracted video feature space based on the idea of Motion History Histogram (MHH) for 2-D video motion extraction. Thirdly, Partial Least Squares (PLS) and Linear regression are applied to learn the relationship between the dynamic features and depression scales using training data, and then to predict the depression scale for unseen ones. Finally, decision level fusion was done for combining predictions from both video and audio modalities. The proposed approach is evaluated on the AVEC2014 dataset and the experimental results demonstrate its effectiveness.The work by Asim Jan was supported by School of Engineering & Design/Thomas Gerald Gray PGR Scholarship. The work by Hongying Meng and Saeed Turabzadeh was partially funded by the award of the Brunel Research Initiative and Enterprise Fund (BRIEF). The work by Yona Falinie Binti Abd Gaus was supported by Majlis Amanah Rakyat (MARA) Scholarship

    A binary self-organizing map and its FPGA implementation

    Get PDF
    A binary Self Organizing Map (SOM) has been designed and implemented on a Field Programmable Gate Array (FPGA) chip. A novel learning algorithm which takes binary inputs and maintains tri-state weights is presented. The binary SOM has the capability of recognizing binary input sequences after training. A novel tri-state rule is used in updating the network weights during the training phase. The rule implementation is highly suited to the FPGA architecture, and allows extremely rapid training. This architecture may be used in real-time for fast pattern clustering and classification of the binary features

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency
    corecore